对称加密和非对称加密的区别是什么?

一、对称加密和非对称加密的区别是什么?

l 对称加密算法

对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES、IDEA和AES。

传统的DES由于只有56位的密钥,因此已经不适应当今分布式开放网络对数据加密安全性的要求。1997年RSA数据安全公司发起了一项“DES挑战赛”的活动,志愿者四次分别用四个月、41天、56个小时和22个小时了其用56位密钥DES算法加密的密文。即DES加密算法在计算机速度提升后的今天被认为是不安全的。

AES是美国联邦政府采用的商业及政府数据加密标准,预计将在未来几十年里代替DES在各个领域中得到广泛应用。AES提供128位密钥,因此,128位AES的加密强度是56位DES加密强度的1021倍还多。假设可以制造一部可以在1秒内DES密码的机器,那么使用这台机器一个128位AES密码需要大约149亿万年的时间。(更深一步比较而言,宇宙一般被认为存在了还不到200亿年)因此可以预计,美国国家标准局倡导的AES即将作为新标准取代DES。

l 不对称加密算法

不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。

二、六边形面积的计算公式是什么?

正六边形面积公式:S=(3x√3/2)x(a²)。其中a为正六边形的边长。

公式说明:因为是正六边形,正六边形就可以分成过中心6个全等的正三角形,作正三角形的高,利

用勾股定理可求高为√3/2×a,每个三角形的面积都是√3/4×a²,所以正六边形的面积为(3/2)×√3a²。

扩展资料

在正多边形中,只有三种能用来铺满一个平面而中间没有空隙,就是正三角形、正方形、正六边形。因为正三角形的每一个角等于60度,六个正三角形拼在一起时,在公共顶点上的六个角之和等于360度。

正方形的每个角等于90度,所以四个正方形拼在一起时,在公共顶点上四个角的和也刚好等于360度;正六边形的每个角等于120度,三个正六边形拼在一起时,在公共顶点上的三个角之和也等于360度。

如果用别的正多边形,就不能达到这个要求。例如:正五边形的每只角等于108度,把三个正五边形拼在一起,在公共顶点上三个角之和是108度*3=324度,小于360度有空隙。而空隙处又放不下第四个正五边形,因为108度*4=432度,大于360度。

三、圆周长的计算公式是怎样的?

圆周长C=2πr=πd,其中d是圆的直径,r是圆的半径。

同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆作为轴对称、中心对称图形。

同时,圆作为“正无限多边形”,无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆。

一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等。

扩展资料:

有关圆周角和圆心角的性质和定理

1、等,那么他们所对应的其余各组量都分别相等。

2、在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

3、直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

4、圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。

5、 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

参考资料来源:百度百科-圆周长