一、关于人脸识别?
根握面部实时或如频文件识到的情威数据,检信Allemotion平台根特有的情绪建模及被经网络获得被测试者每一时刻或在说活片段中的害怕,排斥、冲突、期待、压力、兴奋、逻辑、比率、概率、分心、犹豫、认知、紧张、坏感、想象、思考、潜意识、潜在情绪等数据。
现 状
人脸表情识别是机器视觉和模式识别领域具有较为广泛的应用意义。人脸表情识别技术是一个非常活跃的研究领域,它覆盖了数字图像处理、模式识别、计算机视觉、神经网络、心理学等诸多学科的内容。如今,虽然在这方面的应用已取得了一些的成果,但是FRT在实用应用中仍面临着复杂的问题因为人脸五官的分布是非常相似的,而目人脸本身又是一个柔性物体,表情、姿态的千变万化都给正确识别带来了相当大的麻烦,如何能正确识别大量的人并满足实时性要求是迫切需要解决的问题。
系统功能
- 图像获取:该模块主要是从摄像头拍照后进行获取图片,也可以从图片库中获取,获取后的图片可以在软件的界 面中显示出来以便进行识别。
- 图像预处理:该模块主要包括图像光线补偿、图像变成灰色、高斯平滑、均衡直方图、实现图像对比度增强、二值化变换等。
- 人脸定位:该模块主要是将处理后的人脸图片进行定位,将眼睛、鼻子、嘴巴标记出来,以便进行特征提取。
- 特征提取:该模块是在定位后的人脸图片中将眼睛、鼻子、嘴巴的特征值提取和人脸识别认证。
- 情感识别:该模块是从图片中提取的特征值和检信Allemotion自主标记的3万+情感教据库中的值进行比较来完成平静、高兴、吃惊、悲伤、愤怒、厌恶和恐惧7种情感识别功能。
根据面部实时或视频文件识别的情感数据,检信Allemotion平台根据特有的情绪建模及神经网络获得被测试者每一时刻或在说活片段中的害怕、排斥中突、期待、压力、兴奋、逻辑、比率、概率、分心、犹豫、认知、紧张、坏感、想象、思考、潜意识、潜在情绪等教据。
二、gpu人脸识别机器人
GPU人脸识别机器人 是当今科技领域备受关注的一个热门话题,随着人工智能技术的飞速发展,GPU在人脸识别领域的应用日益广泛。GPU(Graphics Processing Unit,图形处理器)作为一种特殊的处理器,具有并行计算能力强大的特点,极大地提升了人脸识别技术的速度和精度。
GPU人脸识别技术如何优化?
人脸识别技术一直是人工智能领域的热点之一,而GPU的应用使得这一技术得以快速发展。在优化GPU人脸识别机器人的技术方面,以下几点是至关重要的:
- 并行计算: GPU的并行计算能力是其最大的优势之一,通过充分利用GPU的并行处理能力,可以大大提升人脸识别的速度和效率。
- 算法优化: 在GPU人脸识别技术中,算法的优化是关键。不断改进人脸识别算法,提高准确率和识别速度,是优化技术的重要途径。
- 数据集训练: 一个高质量的数据集对于人脸识别的准确性至关重要。利用大规模、高质量的数据集进行训练,可以提高机器人的识别能力。
- 硬件部署: 合理的硬件部署可以极大地提高GPU人脸识别机器人的性能。选择适合的GPU和其他硬件设备,并进行合理布局,对于提升系统性能至关重要。
GPU人脸识别机器人的应用场景
GPU人脸识别技术的广泛应用,使得人脸识别机器人在各个领域都得到了推广和应用。以下是一些常见的应用场景:
- 安防监控: GPU人脸识别机器人在安防监控领域具有重要作用,可以帮助监控系统及时发现异常人员,提高安全性。
- 金融领域: 在金融领域,GPU人脸识别机器人可以用于身份验证、支付安全等各种场景,提高交易的安全性和效率。
- 智能门禁: GPU人脸识别机器人也被广泛应用于智能门禁系统中,可以快速、准确地识别员工或访客身份,实现便捷出入。
- 医疗领域: 人脸识别技术在医疗领域的应用也日益普及,GPU人脸识别机器人可以实现患者身份验证、识别医务人员等功能,提高医疗服务效率。
未来发展趋势
随着人工智能技术的不断进步,GPU人脸识别机器人的未来发展前景十分广阔。未来,我们可以期待以下几个发展趋势:
- 智能化: 未来的GPU人脸识别机器人将更加智能化,能够根据环境和用户需求做出智能判断和决策。
- 多模态融合: 未来,GPU人脸识别技术可能会与声纹识别、指纹识别等其他识别技术进行融合,实现多模态识别。
- 隐私保护: 随着人脸识别技术的广泛应用,隐私保护问题也日益受到关注。未来的发展趋势将更加注重用户数据的保护和隐私安全。
总的来说,GPU人脸识别机器人在科技领域的应用前景十分广阔,随着技术的不断创新和进步,我们有理由相信,GPU人脸识别技术将在未来的人工智能领域发挥越来越重要的作用。
三、小区人脸识别机器人
小区人脸识别机器人:保障居民安全的智能技术
随着科技的进步和社会的发展,智能化已经渗透到我们日常生活的方方面面。在城市化进程中,住宅小区是人们居住和生活的重要场所。为了保障小区居民的安全,传统的安保手段逐渐满足不了需求,而人脸识别技术应运而生,并引入到小区管理中,成为一项重要的智能化手段。
小区人脸识别机器人作为一种应用广泛的智能安防设备,通过识别人脸信息来辅助实现小区安全管理。它运用了人工智能技术和图像识别算法,能够准确、高效地进行人脸辨识。与传统的门禁系统相比,小区人脸识别机器人具有许多显著的优势。
提升小区安全性
小区人脸识别机器人在进出口设置了高精度的人脸识别传感器,可以迅速准确地辨识出住户和访客的身份信息,有效地防止陌生人进入小区。通过设定合适的识别策略,小区人脸识别机器人可以实现白名单和黑名单的管理,进一步提升小区的安全性。一旦出现异常情况,机器人能够及时报警,为安保人员提供及时的预警信息。
此外,将小区人脸识别机器人与小区监控系统相结合,可以对小区内的各个区域进行全方位的监控。通过智能识别技术,可以对进出人员的数量、行为轨迹等进行实时分析。这不仅可以帮助管理人员及时发现异常情况,还能够为小区的规划和布局提供数据支持,优化小区的安全管理策略。
提升小区管理效率
传统的小区管理方式通常需要大量的人力投入,包括门卫、巡逻人员等。而小区人脸识别机器人的投入可以大大减轻人力负担,提高管理效率。
使用小区人脸识别机器人,居民可以通过人脸识别快速进出小区,无需刷卡或输入密码,提高了进出小区的便利性。对于小区居民来说,他们不再需要携带门禁卡,也不需要担心卡丢失或忘记密码的问题,提高了居民的居住体验。
同时,小区人脸识别机器人可以自动记录进出人员的信息,实现了对小区人员出入的自动化管理。管理人员可以通过后台平台获得详细的进出记录,包括出入时间、出入频次等信息,方便了管理工作的统计和分析。对于小区的管理公司来说,这也是提升管理水平和服务质量的重要手段。
倡导绿色环保
小区人脸识别机器人的出现,不仅提升了小区的安全性和管理效率,也间接地倡导了绿色环保理念。
一方面,小区人脸识别机器人的运行和使用不需要耗费大量的纸张和能源资源,避免了传统管理方式中产生的大量纸质文档和人工巡查所需的能源消耗。
另一方面,小区人脸识别机器人作为智能安防设备,可以实现对小区各个区域的智能监控,减少了传统摄像头布设的数量,降低了对环境空间的占用和破坏。同时,人脸识别技术的精准性也减少了误报和虚警,避免了不必要的资源浪费。
未来发展趋势
随着人工智能和物联网技术的不断发展,小区人脸识别机器人将会越来越智能化。未来,我们可以期待以下几个方向的发展:
- 1. 多模态识别技术:人脸识别技术结合其他生物特征(如指纹、虹膜等)进行多模态识别,提高辨识准确性。
- 2. 语音交互功能:机器人通过语音交互和居民进行沟通,提供更加贴心的服务。
- 3. 数据挖掘和分析:通过对进出记录、行为轨迹等数据进行挖掘和分析,提供更加智能化的管理决策支持。
- 4. 与智能家居的融合:将智能家居设备与小区人脸识别机器人相连接,实现小区内的智能化生活。
总之,小区人脸识别机器人作为一项智能安防技术,在保障居民安全和提升管理效率方面具有重要作用。随着技术的进步和创新,相信小区人脸识别机器人的应用将会越来越广泛,为我们的居住环境带来更多的便利和安全。
四、人脸识别成为热点,那么人脸识别真的很安全吗?
下上是最新的报道,都是网友投稿的。
AI科技讯:人脸识别安全遭质疑,泄露的数据及其黑产业链何时制止?先进的人脸识别系统已经可以在人群中将你认出来。虽然这项技术在日常生活中的某些方面保障了人的安全,但也窃取了人的隐私,甚至比我们自己更了解自己,并操纵我们。国外有媒体报道,人脸识别技术对我们隐私的侵犯或许让人无法想象。
近期,有朋友无奈的抱怨,2019上海世界人工智能大会即将召开,因业务需求他需要邀请一位欧洲科学家参会,但是当听说大会现场需要进行人脸识别才能参会时,他极度不适的发出了怒吼。
最后,虽然已经告知外国科学家参会方式还有二维码扫描,但是他还是拒绝了此次会议。截止目前,这位朋友表示还是想不明白,一个人脸识别至于让他发这么大的火么?
也许我们听到这个也觉得很不可思议,但是当我们看到国内近期几则报道就不会如此惊讶了?
3D打印人脸骗过支付宝刷脸购买火车票
现在几乎每个人手机上都会有支付宝,随着支付宝上线刷脸支付,很多人对于这项高科技也喜闻乐见。
然而8月初,一个3D打印的公众号发布了一个测试视频,在视频中,工作人员使用3D打印制作的蜡像人头,骗过支付宝的人脸识别系统,成功买到了一张火车票,这一小视频曾一度在网上疯传,吓坏了很多网友,并表示已经关闭了人脸识别功能。
其实这个3D打印头像中国人并不是原创,去年有日本公司已经研发出了这款产品,而且非常逼真,也曾引起了国内很多媒体关注,当时就有很多人表示刷脸解锁遭遇了新挑战。
攻破iPhone刷脸解锁转走熟睡用户钱
Face ID,苹果iPhone最先进的刷脸解锁方式,也一直以3D识别更安全而著称。
相比广大安卓阵线的2D刷脸识别,iPhone用了更贵的传感器,能够实现更周密强大的活体识别,保证用户在闭眼情况下不会被解锁手机。
但是,就在前不久的白帽黑客大会上,向来以安全著称的iPhone刷脸,还是腾讯的一位安全研究员研发的一副简单眼镜攻破了。
由于刷脸解锁需要用户看一眼才能解锁。因此该研究员在眼镜镜片上贴有黑色胶带,黑胶内又嵌有白色胶带,成功仿造了人眼识别信息(虹膜识别),最终成功解锁熟睡用户的iPhone,并进一步转走他支付账户中的钱。
也许大家认为这只是极端个例,但是看了下面的例子就知道人脸识别到底有多荒唐。
将政府要员识别成罪犯,人脸识别错误率高达35%
说起人脸识别技术,美国在该领域一直处于前沿位置。尽管如此,目前的人脸识别技术还是错误百出。
去年,一篇发表在外媒网站的文章中指出,如今非常热门的AI应用人脸识别,针对不同种族的准确率差异巨大。其中,针对黑人女性的错误率高达21%-35%,针对白人男性的错误率则低于1%,这在美国可以说是非常不正常的。
另外,还有一个乌龙事件需要强调,亚马逊在2016年推出的图像识别AI系统Rekognition,曾将28名美国国会议员识别成了罪犯,当时引得美国社会一片哗然,也令大众对人脸识别技术充满了质疑。
不仅仅是国外,国内这种嘀笑皆非的场景也时有发生。比如因为“闯红灯”而被公示在电子曝光屏的董明珠,事实是所谓的“董明珠”只是公交车上的一个印刷广告;又比如一名坐在公交车内靠窗位置的普通民众,莫名其妙的被人脸识别抓拍系统定义为闯红灯……
对于人脸识别存在的技术误差,中国科学院自动化研究所张晓波博士曾表示,照明、姿势、装饰等都会对人脸识别系统产生影响,而对于那些非合作情况下的人脸图像采集,遮挡问题仍很严重。
特别是在实际监控环境中,被监控对象常会佩戴着眼镜或帽子等配件,使得捕获的人脸图像不完整,影响后续的特征提取和识别,甚至导致人脸检测算法无效,且在大规模应用环境中,如何维持或提高人脸识别算法的识别率,目前也是一个非常重要的问题。
除了以上提出的技术准确性外,人脸识别的安全性也在中国开始面临着严峻考验。其中一个就是,由于人脸识别的信息存储仍基于计算机可识别的语言,也就是我们常说的数字或特定代码,随着这些数据价值的提高,使其遭到黑客攻击的风险也会随之增高。
一旦这些个人数据被窃取,你的脸可能就不只属于自己了。
谁来保存数据库,谁来保证数据安全?
人脸识别是一种1:1或1:N的技术手段,在具体应用场景中,它可以根据已有人脸数据识别并判定某一特殊对象是否与数据库中的是同一人,也可以依据某一个人脸数据,从成千上万人中找出对应的人。这之中,数据库中保存的数据将成为关键一环,也是引发人们担忧并发出质疑的地方——这些数据究竟属于谁?谁能用我的数据?
近年来,因为研发需要以及人脸识别应用的逐渐普及,包括政府机构、银行、小区物业、人脸识别研发公司都需要用到数据库。
以银行为例,当人们办理某些业务时,人脸识别已经成为了一种常态,柜台工作人员会在过程中要求人们将头抬起,并将面部朝向摄像头以进行识别,而在银行APP 中,要求卡主进行人脸识别认证也已经成为一种日常操作。既然要识别,那就意味着有对比数据,这些数据被谁拿走了?是银行?是公安?是提供人脸识别技术的公司?还是其他居心叵测的组织?
百万数据泄露,人脸识别遭遇黑产业链
今年年初,深网视界公司(人脸识别公司商汤科技和上市公司东方网力合资公司)被曝发生数据泄露,致使250万人的私人信息能够不受限制被访问,引发业内广泛关注。
据了解,深网视界主营业务为人脸识别、AI和安防,一家定位为“AI+安防”的公司发生如此大规模的信息泄露事件不免令人唏嘘。
如果说此次事件引发了人们关于人脸识别技术信息安全方面的担忧和关于隐私等方面的道德讨论那还算是好事,然而后面这件事让人震怒。
据爆料此事发生之后,目前国内竟然催生了一批人脸识别数据倒卖的生意,一张人脸照片竟然能卖到几元钱,那么几千几万张甚至几百万张照片就能获利无数。
在这种利益的诱惑下,越来越多的黑客也加入其中,就连一些小厂商或物业公司也通过人脸识别闸机、门禁等各种手段获取数据进行着地下肮脏交易,在法律的边缘试探。
据了解,这些交易的数据大部分也将被运用于AI的养料,用来训练更加聪敏的AI。比如网上一度疯传的杨幂换脸小视频、被用于色情场所的美国知名主持人等。
隐私问题爆发,人脸识别国内受严重质疑
人脸识别正在不可避免地走向另外一个极端。
从朋友圈里的AI面相识别小程序,到走进大街小巷的AI测肤,在到娱乐方面的AI换脸、以及再到随处可见的刷脸支付,无一不是热火朝天。
面对数据泄露问题,虽然法律和监管方面并没有明确规定,但是相关部门已经开始发声。
今年7月份,央行科技司司长李伟在第四届全球金融科技(北京)峰会上表示,人脸是非常敏感的个人信息。一旦泄露或者被盗取,会带来非常大影响。
他强调,有技术也不能滥用,有技术也不能任性。“特别是一些企业设计模式场景不考虑这些问题:一方面刷脸,另外一方面还让人在大的屏幕上输入自己的手机号码,这是多么危险的事情。这对于这种创新,我觉得应该要及时指出来纠正。
一位行业资深专家表示,当今社会存在这种普遍滥用人脸识别技术的现象,不管是互联网巨头还是人工智能独角兽都热衷于跑马圈地,将关注点放在业务发展上,对数据安全管理的投入又很少,整个社会隐私安全意识也很淡薄,是时候需要一些监管部门出来管理细则了。
否则,如果继续这么下去,以后大家都不能随便出门了!
你想想,买东西刷脸、吃饭刷脸、过闸机刷脸、就连酒店开个房也刷脸,哪有隐私可言?
更有甚者,万一整容了和男朋友在机场过不了安检这可咋整?
文章来自于公众号:AI世界(AI_retail),关注公众号回复关键词“5G”获取《5G最完整的PPT》,回复“资料”获取160份人工智能产业报告。
五、人脸识别为什么无法识别照片?
结论:分情况,2D人脸识别多数不具备照片防伪,3D人脸识别具备照片防伪。
人脸识别技术发展到目前,已经到达了相对成熟的阶段,只是出于成本以及应用场景要求的因素,呈现出多种形态和性能的人脸识别技术和终端。
1、从识别原理上,分2D和3D人脸识别。
2D和3D人脸识别,简单的从字面意思就可以理解,前者是采集和校验的以人脸的2D特征和属性为算法识别依据,而后者是多出了纵向深度的三维的脸部特征识别和计算方式。
2D的人脸识别通常应用在成本要求高,安全性要求较低的场景,比如传统的楼宇对讲系统和门禁系统等都是2D识别的,从严格意义的安全上来讲,这些终端是无法对于照片,视频等2D属性的人脸图像进行区分的,也就是说不具备2D防伪。
但是,也不是说2D的识别就绝对的不能实现照片防伪的。比如国产很多智能手机也支持人脸识别解锁,但是其就是利用了前置摄像头部件进行的,与苹果手机的3D结构光(刘海屏及灵动岛硬件结构)相比,就是属于安全级别降级的2D人脸识别。但是,这些手机也通过算法调整,具备了一定程度的照片防伪识别能力。
而3D人脸识别就属于近几年才大规模开始应用的技术,分为3D结构光,TOF,双目识别三种类型,安全性和识别体验相比2D大大提升,当然成本也高出了不少。典型的应用场景,比如iPhoneX以上的智能手机,高端的人脸识别智能门锁,机场安检人脸识别终端,以及刷脸支付等等。
2、3D人脸识别技术分类和简述。
3D人脸识别技术根据技术原理和形态的不同,分为3D结构光,TOF技术,以及双目识别技术:
专题参考:
博乐:白话智能锁—人脸识别技术六、人脸识别应用有哪些?
人脸识别的应用范围其实很广,除了大家通常所说的安防、考勤、门禁、刑侦、ATM等等,现在最火的短视频、直播都是要用到人脸识别的,比如动态贴纸,贴纸随着人脸的移动而相应的移动,就需要用到人脸识别技术。之前很火的脸龄测试、明星脸对比,也都需要用到该技术。
只能说,人脸识别技术的应用是广泛的,展现形式是多样的!
七、什么因素会导致人脸识别系统无法识别出真实的人脸?
遮挡,扭曲,光线不佳,模糊,变形,隐身(?)……当然也不排除系统太拉……
总之只要系统不能通过图像输入提取出有效的特征信息,就有可能影响
八、小度机器人人脸识别
小度机器人人脸识别技术的应用与发展
随着人工智能技术的不断进步,人脸识别已经成为了当今社会中普遍应用的一项技术。而在智能家居领域,小度机器人通过其先进的人脸识别技术,为用户带来了更加便利和安全的智能生活体验。
小度机器人人脸识别技术的优势
小度机器人利用先进的人脸识别算法和技术,能够准确快速地识别用户的面部特征,实现对不同用户的个性化识别和定制化服务。通过智能学习和持续优化,小度机器人的人脸识别技术可以逐渐提升准确度和识别速度,为用户提供更加智能化的互动体验。
小度机器人人脸识别技术的应用场景
小度机器人的人脸识别技术在智能家居领域具有广泛的应用场景。用户可以通过人脸识别功能,实现语音助手与特定用户的个性化交互,例如识别不同家庭成员并提供针对性的服务。此外,人脸识别技术还可以用于智能门禁系统,安全可靠地验证用户身份,保障家庭安全。
小度机器人人脸识别技术的发展趋势
随着人工智能技术的不断发展,小度机器人的人脸识别技术也将不断进行创新和优化。未来,随着更多用户场景的涉足,人脸识别技术将在智能家居领域发挥更大的作用,为用户提供更加智能、便捷的生活体验。
结语
小度机器人人脸识别技术的应用与发展,将进一步推动智能家居的发展,为用户带来更多便利与安全保障。随着技术的不断进步和创新,相信小度机器人的人脸识别技术将在未来展现出更加强大的潜力与应用前景。
九、机器人学习人脸识别
机器人学习人脸识别的重要性
随着人工智能技术的不断发展,机器人学习人脸识别成为了智能设备中不可或缺的一部分。通过机器人学习人脸识别,智能设备不仅可以识别不同的人脸,还能够根据具体的需求进行个性化的服务。本文将探讨机器人学习人脸识别的重要性以及应用场景。
为什么机器人学习人脸识别如此重要?
首先,机器人学习人脸识别可以提高智能设备的安全性。通过识别用户的脸部特征,智能设备可以实现人脸解锁功能,有效防止信息泄露和非法访问。其次,机器人学习人脸识别可以提升用户体验。用户无需输入复杂的密码或进行繁琐的操作,只需通过人脸识别即可快速解锁设备,使交互更加便捷高效。
此外,机器人学习人脸识别还能够带来更多个性化的服务。智能设备可以根据用户的脸部特征识别出用户的身份,并根据用户的喜好、习惯等个性化信息为用户提供定制化的服务,提升用户体验。
机器人学习人脸识别的应用场景
机器人学习人脸识别在各个领域都有着广泛的应用。在智能家居领域,智能门锁通过人脸识别技术可以识别家庭成员的身份,实现智能门禁管理,提升家庭安全性;在金融领域,银行可以通过人脸识别技术验证客户身份,加强账户安全性;在公共安全领域,监控摄像头通过人脸识别技术可以快速识别嫌疑人,提升治安管理效率。
除此之外,在零售领域,商家可以通过人脸识别技术了解顾客的购买偏好,为顾客推荐更合适的商品;在医疗领域,医院可以通过人脸识别技术快速识别患者身份,减少医疗事故发生的可能性。
结语
总的来说,机器人学习人脸识别作为人工智能技术的重要应用之一,在提高安全性、提升用户体验、个性化服务等方面发挥着重要作用。随着技术的不断进步和应用场景的不断拓展,机器人学习人脸识别将会在更多领域展现出其巨大的应用潜力。
十、人脸识别的发展前景如何?有木有免费的人脸识别云平台?
人脸识别的发展前景一片大好的,从美颜、图片处理、考勤机的火爆就知道了。至于免费人脸云平台,旷视科技家的Face++.com就是一家免费的人脸识别平台。对啦,旷视科技9月19日上线了Face++全新升级过的新人工智能云平台Megvii Cloud,而且现在只要开发者注册就能有价值500元的免费使用额度的。