数据新闻经典案例?

一、数据新闻经典案例?

一个经典的数据新闻案例是2012年《纽约时报》的《如何花钱状组织政治选举》系列报道。该系列报道利用大量数据分析和可视化技术,揭示了政治竞选活动中巨额资金的流向和影响。通过对政治献金数据的深入挖掘,该报道揭示了大企业和富裕个人对政治决策的潜在影响,引发了社会广泛关注和深入讨论。

这一经典案例充分展示了数据新闻的力量,不仅揭示了社会现象背后的规律,还引发了观众对政治体制和公共事务的深刻思考。

二、什么是案例数据?

案例数据是指人们在生产生活当中所经历的典型的富有多种意义的事件陈述。它是人们所经历的故事当中的有意截取。案例一般包括三大要素。案例对于人们的学习、研究、生活借鉴等具有重要意义。基于案例的教学是通过案例向人们传递有针对性的教育意义的有效载体。

三、大数据营销案例?

某公司通过分析用户数据发现,购买过某产品的用户中,有60%的人在未来一个月内会再次购买同一产品或类似产品。

该公司利用这一信息,向这部分用户发送个性化营销电子邮件,推荐相关的产品。结果显示,这部分用户的二次购买率提高了20%。这一案例表明,大数据营销可以帮助企业洞察用户需求,并有针对性地开展营销活动,以提高销售业绩。

四、数据库设计 案例?

以下是一个简单的MySQL数据库设计案例,以存储学生和课程信息为例:

假设我们有两个实体:学生(Student)和课程(Course),每个学生可以选择多个课程,每个课程可以被多个学生选择。

首先,我们创建两个表来表示学生和课程:

Student表

列名类型
student_idINT (主键)
nameVARCHAR
ageINT
genderVARCHAR

Course表

列名类型
course_idINT (主键)
nameVARCHAR
creditINT
instructorVARCHAR

接下来,我们需要创建一个关联表来存储学生和课程之间的关系,表示学生选择了哪些课程:

Student_Course表

列名类型
student_idINT (外键)
course_idINT (外键)

在Student_Course表中,student_id和course_id列分别作为外键,关联到Student表和Course表的主键。

这种设计模式称为"多对多"关系,通过使用关联表来实现学生和课程之间的多对多关系。

通过以上的数据库设计,你可以存储和查询学生、课程以及学生选择的课程的信息。当然,具体的数据库设计取决于你的实际需求和业务规则,上述仅提供了一个简单的示例。

五、案例分析ppt要用数据吗?

答,数据是证明事件结论的重要论据。

所以,无论分析的内容是什么,如果有足够准确的,且具备足够说服力的数据,就一定要用数据来说明分析情况。

六、pandas数据分析实战案例?

当使用 Pandas 进行数据分析时,以下是一个实战案例的示例:假设我们有一个包含不同国家或地区的人口数据的 DataFrame,其中包括列如 country (国家或地区名称)、 population (人口数量)和 area (面积)。首先,我们可以使用 Pandas 读取并查看数据: import pandas as pd# 读取数据data = pd.read_csv('population_data.csv')# 查看前 5 行数据print(data.head()) 接下来,我们可以进行一些基本的数据分析操作,例如计算每个国家或地区的人口密度(单位:人/平方公里): # 计算人口密度data['density'] = data['population'] / data['area']# 查看前 5 行数据,现在包含人口密度列print(data.head()) 然后,我们可以使用 Pandas 的图形功能绘制一个人口密度的散点图,以便直观地观察不同国家或地区的人口密度分布: # 绘制人口密度散点图import matplotlib.pyplot as pltplt.scatter(data['area'], data['density'])plt.xlabel('Area (square kilometers)')plt.ylabel('Population Density (people per square kilometer)')plt.title('Population Density')plt.show() 最后,我们可以对人口数据进行一些统计分析,例如计算每个国家或地区的人口数量的总和、平均值、中位数等: # 统计分析print('总人口:', data['population'].sum())print('平均人口:', data['population'].mean())print('中位数人口:', data['population'].median()) 通过以上示例,我们使用 Pandas 进行了数据读取、数据处理、图形绘制和统计分析等基本的数据分析操作。你可以根据自己的实际数据和需求进行进一步的分析和探索。请注意,在实际应用中,你可能需要根据数据的特点和分析的目的选择适当的方法和函数。此外,还可以结合其他数据分析工具和技术,如数据清洗、数据可视化、数据建模等,以获得更深入的洞察和结论。

七、大数据数据挖掘案例

大数据数据挖掘案例详解

大数据时代的到来给企业带来了前所未有的数据分析机会。数据挖掘作为一种重要的技术手段,在大数据场景下发挥着至关重要的作用,帮助企业从海量数据中提炼出有价值的信息,为决策提供支持。本文将详细介绍几个经典的大数据数据挖掘案例,带领读者深入了解这一领域的应用和意义。

电商行业个性化推荐

在电商领域,个性化推荐是提升用户购物体验和增加销售额的重要手段。通过大数据数据挖掘技术,电商企业可以根据用户的浏览历史、购买记录和行为偏好,实现精准的个性化推荐,从而提高用户的点击率和转化率。比如,利用协同过滤算法和内容分析技术,京东、淘宝等知名电商平台能够向用户展示他们可能感兴趣的商品,为用户提供个性化的购物体验。

金融领域风险预测

在金融领域,风险控制是至关重要的环节。大数据数据挖掘可以通过分析客户的信用历史、交易记录和行为特征,构建风险评估模型,帮助金融机构准确预测客户的信用风险和违约概率,从而降低贷款违约风险和资产损失。许多银行和保险公司都在利用大数据技术提升风险管理能力,有效应对市场波动和金融风险。

医疗领域疾病诊断

在医疗健康领域,大数据数据挖掘在疾病诊断和治疗方面发挥着重要作用。通过分析患者的临床数据、生理指标和基因组信息,医疗机构可以建立疾病预测模型和个性化治疗方案,提高诊断准确性和治疗效果。例如,利用机器学习算法和数据挖掘技术,医生可以更快速地识别疾病特征,帮助患者及时采取有效的诊疗措施。

零售行业供应链优化

零售行业的供应链管理直接影响到产品的供给和销售。通过大数据数据挖掘技术,零售企业可以实时监测库存状况、销售情况和市场需求,优化供应链布局和运作方式,提高库存周转率和订单履约速度。一些大型零售商如沃尔玛、亚马逊等利用数据分析和挖掘技术优化供应链管理,降低库存成本和提升运营效率。

总结

大数据数据挖掘在各个行业均有着广泛的应用前景,可以帮助企业实现数据驱动决策、精准营销和智能化服务。随着技术的不断进步和大数据资源的不断丰富,数据挖掘技术的发展空间愈发广阔,将在未来持续发挥重要作用,推动各行业的转型升级。

八、什么是大数据,大数据的典型案例有哪些?

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

案例;比如你早上有重要会议,结果却被堵在路上不知道什么时候才能到公司,这时你可能除了干着急也没什么能做的。你不能,大数据分析可以。借助大数据分析,、你可以找出拥堵不严重的路甚至通过实时疏导来解决整个城市的拥堵问题。

九、大数据三个典型案例?

大数据的典型案例包括:

1. 金融行业的风险管理,通过分析大量的交易数据和用户行为数据,可以识别潜在的风险,提高风险管理能力。

2. 零售行业的精准营销,通过分析顾客购买记录和行为数据,可以实现个性化推荐和定制化营销,提高销售效果。

3. 医疗行业的疾病预测,通过分析大量的病历数据和基因数据,可以预测疾病的发生概率和风险,提前采取干预措施,提高治疗效果。这些案例充分展示了大数据在不同行业中的应用潜力和价值。

十、什么数据库包含经典案例?

sqlserver数据库包含了一个图书销售的案例,数据库本身的资料都是以此案例来讲解的