大数据统计与分析是什么专业?

一、大数据统计与分析是什么专业?

大数据统计与分析是属于数学一类的专业。大数据统计与分析是众多学科与统计学交叉产生的一门新兴学科。大数据统计与分析牵扯的数据挖掘、云计算一类的,所以是数学一类的专业。该专业旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。

二、大数据统计与分析

大数据统计与分析在当今的数字化时代变得越来越重要。随着互联网的普及和技术的进步,我们所产生的数据量已经达到了一个惊人的程度。这些数据包含着宝贵的信息,如果能够对其进行适当的统计和分析,将能为个人、企业和政府带来巨大的收益。

什么是大数据统计与分析

大数据统计与分析是指对大量的、复杂的、多样化的数据进行整理、处理、分析和挖掘的过程。它通过应用数学、统计学和计算机科学的方法,帮助我们从数据中发现隐藏的模式、规律和趋势,从而为决策提供支持。

大数据统计与分析主要依赖于计算机技术和算法,能够快速地处理和分析海量的数据。通过对数据的建模、清洗和预处理,可以将原始数据转化为方便分析的形式,并利用可视化和统计工具进行数据的探索和解释。

大数据统计与分析的重要性

大数据统计与分析在各个领域都有着重要的应用价值。以下是一些示例:

商业领域

  • 市场调研与预测:通过对大数据的分析,企业可以了解市场需求、消费者行为和趋势,从而制定更加有效的市场策略和商业决策。
  • 客户关系管理:通过对客户的行为、偏好和反馈进行分析,企业可以更好地了解客户需求,提供个性化的产品和服务,增加客户满意度和忠诚度。
  • 供应链管理:通过对供应链数据的分析,企业可以实时监控库存、预测需求、优化物流,从而提高供应链的效率和响应速度。

金融领域

  • 风险管理:通过对大数据的分析,金融机构可以识别和评估潜在的风险因素,制定合理的风险控制策略,降低风险损失。
  • 欺诈检测:通过对大量的交易数据进行分析,可以识别异常模式和行为,及时发现并预防欺诈和盗窃行为。
  • 个人投资:通过对市场、行业和公司数据的分析,个人投资者可以做出更加明智的投资决策,提高投资回报率。

医疗领域

  • 疾病预测:通过对病人的医疗数据和遗传信息进行分析,可以预测疾病的发生、传播和治疗方案,提供个性化的医疗服务。
  • 药物研发:通过对大量的生物数据进行分析,可以快速筛选和评价新药的有效性和安全性,加快药物研发的进程。
  • 医院管理:通过对医院的运营数据进行分析,可以优化资源配置、提高服务质量、降低成本,实现医院管理的科学化和智能化。

大数据统计与分析的挑战

与大数据统计与分析相关的挑战主要包括:

  • 数据质量:大数据往往包含一些噪音、异常和缺失值,需要进行数据清洗和纠错,以提高数据的质量和可靠性。
  • 数据隐私:随着数据的积累和应用,数据隐私和安全问题越来越突出。在进行大数据统计与分析时,需要采取有效的数据脱敏和隐私保护措施。
  • 计算能力:大数据的处理需要强大的计算能力和存储资源。企业和机构需要投资和构建相应的大数据平台和系统。

大数据统计与分析的未来

随着技术的不断进步和数据的不断积累,大数据统计与分析在未来将发挥更加重要的作用。

首先,随着物联网的普及和云计算的发展,我们将面临更加广泛和深入的数据采集与存储,需要运用大数据统计与分析的方法和技术来处理和挖掘这些数据,为各个领域的决策提供更加准确和有力的支持。

其次,人工智能和机器学习的快速发展也将推动大数据统计与分析的应用。通过建立智能模型和算法,我们可以更好地发现数据中的模式和规律,实现更加智能化的数据分析和决策。

最后,数据隐私和安全问题将成为大数据统计与分析领域的热点。我们需要不断研究和改进数据脱敏和隐私保护技术,以平衡数据科学与个人隐私的关系。

总之,大数据统计与分析是当今数字化时代不可或缺的一部分。它将为我们带来更多的机遇和挑战,同时也需要我们不断学习和创新,以适应日益变化的数据环境。

三、大数据分析公司有哪些?

大数据分析领域拥有许多知名公司,如IBM、Cloudera、Tableau、SAP、Splunk、SAS、Palantir等。这些公司提供了各种大数据分析工具和服务,包括数据集成、数据存储、数据处理、数据分析和可视化等。

它们在不同领域的客户中都有广泛的应用,例如金融、零售、医疗、制造和政府等。

这些公司以其先进的技术、丰富的经验和优质的服务而闻名,为客户提供了更加智能化和灵活的数据分析解决方案。

四、大数据分析中,有哪些常见的大数据分析模型?

常见数据分析模型有哪些呢?

1、行为事件分析:行为事件分析法具有强大的筛选、分组和聚合能力,逻辑清晰且使用简单,已被广泛应用。

2、漏斗分析模型:漏斗分析是一套流程分析,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。

3、留存分析模型留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始化行为的用户中,有多少人会进行后续行为。这是用来衡量产品对用户价值高低的重要方法。

4、分布分析模型分布分析是用户在特定指标下的频次、总额等的归类展现。

5、点击分析模型即应用一种特殊亮度的颜色形式,显示页面或页面组区域中不同元素点点击密度的图标。

6、用户行为路径分析模型用户路径分析,顾名思义,用户在APP或网站中的访问行为路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径的转换数据进行分析。

7、用户分群分析模型用户分群即用户信息标签化,通过用户的历史行为路径、行为特征、偏好等属性,将具有相同属性的用户划分为一个群体,并进行后续分析。

8、属性分析模型根据用户自身属性对用户进行分类与统计分析,比如查看用户数量在注册时间上的变化趋势、省份等分布情况。

五、大数据分析的技术有哪些?

大数据分析的技术包括数据挖掘、机器学习、自然语言处理、数据可视化等。

数据挖掘是通过算法和模型来发现数据中的模式和规律,机器学习则是利用算法和模型来让机器自动进行决策和预测。

自然语言处理则是对自然语言文本进行语义分析和理解,从而实现自然语言的处理和理解。而数据可视化则是将数据转化为图表、图像等可视化的形式,以便更好地展示和理解数据。这些技术的综合应用可以帮助企业和组织更好地理解和利用数据,实现更好的业务决策和创新。

六、数据统计分析方法,如何做好数据统计?

数据分析是把隐没在一大批看来杂乱无章的数据中的信息,集中、萃取和提炼出来,以找出所研究对象的内在规律,并提供决策支持的一系列分析过程。数据统计分析方法已经应用到各行各业,在互联网电商的运用也非常广泛。在做网络推广时,一定要用数据分析作为基础。没有数据做支撑的推广是没有意义的。在这里介绍一些方法和工具。

1.比较分析法

是统计分析中最常用的方法。是通过有关的指标对比来反映事物数量上差异和变化的方法。指标分析对比分析方法可分为静态比较和动态比较分析。静态比较是同一时间条件下不同总体指标比较,如不同部门、不同地区、不同国家的比较,也叫横向比较;动态比较是同一总体条件不同时期指标数值的比较,也叫纵向比较。这两种方法既可单独使用,也可结合使用。

2.分组分析法

统计分析不仅要对总体数量特征和数量关系进行分析,还要深入总体的内部进行分组分析。分组分析法就是根据统计分析的目的要求,把所研究的总体按照一个或者几个标志划分为若干个部分,加以整理,进行观察、分析,以揭示其内在的联系和规律性。统计分组法的关键问题在于正确选择分组标值和划分各组界限。

3.回归分析法

回归分析法是依据事物发展变化的因果关系来预测事物未来的发展走势,它是研究变量间相互关系的一种定量预测方法,回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。

4.因素分析法

因素分析法的最大功用,就是运用数学方法对可观测的事物在发展中所表现出的外部特征和联系进行由表及里、由此及彼、去粗取精、去伪存真的处理,从而得出客观事物普遍本质的概括。其次,使用因素分析法可以使复杂的研究课题大为简化,并保持其基本的信息量。

七、数据统计分析软件有哪些

数据统计分析软件是现代企业和组织中不可或缺的工具。无论是用于市场调研、业务决策、数据探索还是预测模型构建,一流的数据统计分析软件可以为用户提供强大的功能和高效的数据处理能力。在本篇博文中,我们将介绍几款领先的数据统计分析软件,帮助您选择适合您需求的工具。

1. R语言

R语言是一种开源的统计分析和数据科学语言,拥有强大的数据处理和可视化能力。它提供了丰富的统计分析方法和机器学习算法,并有一个活跃的社区和大量的第三方扩展包。R语言适用于各种数据科学任务,包括数据清洗、探索性分析、模型建立和报告生成等。

示例代码:

<strong>library</strong>(tidyverse) data <- <strong>read.csv</strong>('data.csv') summary(data) ggplot(data, aes(x = age, y = income, color = gender)) + geom_point() + geom_smooth(method = "lm")

2. Python

Python是一种通用编程语言,也被广泛应用于数据统计分析。它有着简洁易读的语法和丰富的数据处理库,如NumPy、Pandas和Matplotlib。Python的统计分析能力可以通过SciPy和StatsModels等扩展库进一步增强。除了数据分析,Python还可用于Web开发、机器学习和人工智能等领域。

示例代码:

<strong>import</strong> pandas as pd
data < <strong>pd.read_csv</strong>('data.csv')
data.describe()
data.plot.scatter(x='age', y='income', c='gender')

3. SPSS

SPSS(统计产品与服务解决方案)是IBM开发的一款专业统计分析软件。它提供了各种统计方法和数据建模技术,适用于大规模数据处理和高级统计分析。SPSS具有用户友好的界面和丰富的图形展示功能,使得用户可以方便地进行数据探索和分析。

4. SAS

SAS是一种广泛应用于企业领域的数据分析软件。它具有强大的数据整合和数据处理能力,能够处理大规模数据,并支持复杂的统计建模和预测分析。SAS提供了直观的用户界面和多样化的分析工具,使用户能够在复杂的商业环境中进行数据分析和决策。

5. Excel

Excel是一款常见的办公软件,也具备一定的统计分析功能。虽然Excel的统计能力相对较弱,但它广泛使用且易于掌握。适用于中小型数据分析和简单统计计算。Excel提供了各种数据处理和可视化选项,可以满足一些基本的数据统计分析需求。

结论

以上是几款领先的数据统计分析软件。R语言和Python是开源工具,拥有庞大的用户社区和广泛的应用场景;而SPSS、SAS和Excel则为商业软件,提供了更多的专业功能和技术支持。根据自身需求和实际情况,选择适合的数据统计分析软件是关键。无论您是数据科学家、市场分析师还是业务决策者,通过合适的工具,您可以更轻松地从海量数据中提取有价值的信息和见解,做出明智的决策。

八、etl大数据分析方法?

ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。 ETL是BI项目重要的一个环节。 通常情况下,在BI项目中ETL会花掉整个项目至少1/3的时间,ETL设计的好坏直接关接到BI项目的成败。

ETL的设计分三部分:数据抽取、数据的清洗转换、数据的加载。在设计ETL的时候我们也是从这三部分出发。数据的抽取是从各个不同的数据源抽取到ODS(Operational Data Store,操作型数据存储)中——这个过程也可以做一些数据的清洗和转换),在抽取的过程中需要挑选不同的抽取方法,尽可能的提高ETL的运行效率。ETL三个部分中,花费时间最长的是“T”(Transform,清洗、转换)的部分,一般情况下这部分工作量是整个ETL的2/3。数据的加载一般在数据清洗完了之后直接写入DW(Data Warehousing,数据仓库)中去。

ETL的实现有多种方法,常用的有三种。一种是借助ETL工具(如Oracle的OWB、SQL Server 2000的DTS、SQL Server2005的SSIS服务、Informatic等)实现,一种是SQL方式实现,另外一种是ETL工具和SQL相结合。前两种方法各有各的优缺点,借助工具可以快速的建立起ETL工程,屏蔽了复杂的编码任务,提高了速度,降低了难度,但是缺少灵活性。SQL的方法优点是灵活,提高ETL运行效率,但是编码复杂,对技术要求比较高。第三种是综合了前面二种的优点,会极大地提高ETL的开发速度和效率。

九、大数据分析的方法?

主要包括:1. 数据收集:对数据进行收集和整理,以便后续分析。2. 数据预处理:对数据进行清洗、去重、转换等操作,以提高数据质量。3. 数据挖掘:利用机器学习、深度学习等技术,对数据进行挖掘,发现数据中的规律和模式。4. 数据分析:利用统计学、数学等方法,对数据进行深入分析,得出有价值的结论。5. 数据可视化:将分析结果通过图表、报告等形式进行可视化展示,以便更直观地理解数据。6. 模型优化:根据实际需求和业务场景,对模型进行优化和调整,以提高分析准确性和效率。7. 结果评估:对分析结果进行评估和验证,确保分析结论具有可行性和可操作性。通过以上方法,可以对大数据进行全面、深入的分析,从而为决策提供有力支持。

十、大数据分析中,有哪些常见的大数据分析模型?

无论是产品经理、运营、还是数据分析师在日常工作中, 都需要构建一个完整的指标体系, 但由于经验或者对业务的熟悉程度, 互联网人经常会遇到下面的问题:

1)指标变成满天星:没有重点、没有思路,等指标构建完成了也只是看到了一组数据,各有用处,却无法形成合力,最终不仅浪费了开发人力,也无益于业务推动;

2)指标空洞不落地:需求中没有几个具体的指标,需求空洞,无法落地。

正是上面的原因,产品经理, 运营和数据分析师与数据开发的矛盾不断的激化,所以一个完整的搭建数据指标体系框架和方法是非常重要的。在此,为大家推荐一种实用的 AARRR 分析模型

为了便于理解, 举最近的很火的《隐秘的角落》, 分享一下如何搭建指标体系,让万物都可以被分析:

二、什么是AARRR

AARRR是Acquisition、Activation、Retention、Revenue、Refer这个五个单词的缩写,分别对应用户生命周期中的5个重要环节。

  1. A拉新:通过各种推广渠道,以各种方式获取目标用户,并对各种营销渠道的效果评估,不断优化投入策略,降低获客成本。利用这个模块可以很好帮助市场推广部门比较各个渠道的拉新效果,评估新用户的用户质量。
  2. A活跃:活跃用户指真正开始使用了产品提供的价值,我们需要掌握用户的行为数据,监控产品健康程度。这个模块主要反映用户进入产品的行为表现,是产品体验的核心所在。
  3. R留存:衡量用户粘性和质量的指标。
  4. R转化(变现):主要用来衡量产品商业价值。
  5. R传播:衡量用户自传播程度和口碑情况

三、AARRR在指标体系中的应用

如果我们利用AARRR 框架去构建可以判断《隐秘的角落》的是否受欢迎:

1. 拉新

我们需要去评估现在这部剧在每一个投放的渠道拉来的新用户情况是否有达到预期, 因为这部剧最开始的用户进来的都是新用户, 所以前期的新用户的触达情况是后期是否这部剧火爆的关键所在。

监控新用户的增长曲线, 有助于我们及时发现问题, 利用用户反馈等改进。

2. 激活

当这部剧的新用户来的时候, 很关键的是这些用户有没有在以后的时间看这部剧, 看的时间是怎么样的, 看的频率是怎么样, 每次看这部剧的时候是不是都经常会从头看到完等等, 这些是最直接说明这部剧受到用户的喜爱程度的

3. 留存

留存的定义如下:

  • 次日留存:统计日新增用户次日仍然使用产品的用户数量占总新增用户数量的比例;
  • 7天留存:统计日新增用户第七天仍然使用产品的用户数量占总新增用户数量的比例;
  • 30天留存:统计日新增用户第七天仍然使用产品的用户数量占总新增用户数量的比例

看了这部剧的用户, 还会来看的用户一定逃不出下面的模型.

这部剧高能开篇,片头惊悚的开始。可以说开篇即高能,吊足了观众胃口, 秦昊饰演的张东升,和岳父岳母一起去爬山,到了山顶,前几秒还在调整相机,微笑着给岳父岳母摆姿势准备拍照,下一秒就将岳父岳母推下悬崖,。

片头的悬疑给了用户很强的刺激作用, 也就是上面的"酬赏", 让用户会想着去看下面发生了什么, 于是就是上面的"投入", 不断投入, 也就提升了留存

4. 付费变现

剧的收入应该包括点播(提前看结局购买的特权费用), 流量变现收入(广告), 这个收入真心不了解, 应该还有很多其他方面的收入, 从数据上我们可以将从总收入和人均收入和成本去刻画整体的剧的利润情况。

5. 自传播

这部剧的火爆, 除了本身的的情节引人入胜以外, 自传播也贡献了很大的原因, 当"一起去爬山吧" 这种在各大社交媒体上疯传时, 传播带来的增长就需要用数据去科学的衡量:

如果希望掌握更多数据分析的万能模型,学会行业头部大厂的数据分析套路,欢迎参与知乎知学堂与合作方联合推出的「京东互联网数据分析实战训练营」,接受大厂分析师一对一辅导、踏上面试直通车。训练营限时体验价 0.1 元,不容错过:

--

文章内容来自公众号:Data Science数据科学之美,已获作者授权。转载请联系原作者。