一、大数据关键技术有哪些?
大数据关键技术涵盖数据存储、处理、应用等多方面的技术,根据大数据的处理过程,可将其分为大数据采集、大数据预处理、大数据存储及管理、大数据处理、大数据分析及挖掘、大数据展示等。
二、多媒体的关键技术是数据?
多媒体计算机的关键技术是解决视频、音频信号的获取和处理,包括多媒体数据的压缩编码和解码技术以及多媒体数据的输出技术。主要应用于通信、娱乐和计算机的融合,为解决电视数字化及高清晰度提供了切实可行的方案。多媒体计算机可制作DVD及影视音响设备,以及制作多媒体家庭网关。
三、传统数据采集的关键技术有哪些?
大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
一、大数据采集技术
数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。
二、大数据预处理技术
主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。
三、大数据存储及管理技术
大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。
四、大数据分析及挖掘技术
大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
六、大数据展现与应用技术
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。
四、地理大数据分析的关键技术?
大数据技术是从各种类型的数据中快速获取有价值信息的技术。大数据领域出现了大量的新技术,它们已经成为大数据收集、存储、处理和呈现的有力武器。大数据处理的关键技术一般包括大数据收集、大数据预处理、大数据存储和管理、分析和挖掘、大数据收集、大数据预处理、大数据存储和管理、大数据的表示和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
五、工业机器人常见五大应用领域及关键技术?
工业机器人常用的五大应用领域
1.机械加工应用(2%)
机械加工行业机器人的应用并不高,只占2%。原因可能是市场上有许多自动化设备可以胜任机械加工任务。机械加工机器人主要从事零件铸造、激光切割和水射流切割。
2.机器人喷涂应用(4%)
这里的机器人喷涂主要是指涂装、点胶、喷漆等工作,只有4%的工业机器人从事喷涂的应用。
3.机器人装配应用(10%)
装配机器人主要从事零部件的安装、拆卸和维修。由于近年来机器人传感器技术的快速发展,机器人的应用越来越多样化,直接导致机器人装配比例的下降。
4.机器人焊接应用(29%)
机器人焊接的应用主要包括汽车工业中使用的点焊和弧焊。虽然点焊机器人比弧焊机器人更受欢迎,但弧焊机器人近年来发展迅速。许多加工车间逐渐引入焊接机器人,以实现自动焊接操作。
5.机器人搬运应用(38%)
目前,处理仍然是机器人的第一个应用领域,约占整个机器人应用程序的40%。许多自动化生产线需要使用机器人进行材料、处理和堆垛操作。近年来,随着合作机器人的兴起,处理机器人的市场份额一直在增长。近年来,随着技术的发展,工业机器人技术日新月异,那么不同类型的工业机器涉及高科技技术?
二、关键技术包括:
(1)弧焊机器人系统优化集成技术:弧焊机器人采用交流伺服驱动技术和高精度、高刚性RV减速器和谐波减速器,具有良好的低速稳定性和高速动态响应,可实现免维护功能。
(2)协调控制技术:控制多机器人和换位机的协调运动,既能保持焊枪和工件的相对姿态,满足焊接工艺的要求,又能避免焊枪与工件的碰撞。
(3)精确焊接轨迹跟踪技术:结合激光传感器和视觉传感器离线工作模式的优点,采用激光传感器实现焊接过程中的焊接跟踪,提高复杂工件焊接机器人的柔性和适应性,结合视觉传感器离线观察获得焊接跟踪的残余偏差,根据偏差统计获得补偿数据,修正机器人运动轨迹,在各种条件下获得最佳焊接质量。
附:十大工业机器人品牌
1.发那科
发那科是日本一家专门研究数控系统的公司,是世界上唯一一家由机器人制造的公司,也是世界上唯一一家提供集成视觉系统的机器人公司。FANUC机器人产品系列多达240种,广泛应用于装配、搬运、焊接、铸造、喷涂、码垛等不同生产环节。
2.库卡
库卡及其德国母公司是世界顶级的工业机器人和自动控制系统制造商。库卡工业机器人的用户包括通用汽车、西门子和许多其他单位。KUKA机器人产品最常用的应用范围包括工厂焊接、操作、堆垛、包装、加工或其他自动操作,但也适用于医院。
3.那智不二越
智慧是从原材料产品到机床的全方位综合制造企业。机械加工、工业机器人、功能部件等产品丰富,应用领域也非常广泛,如航天工业、轨道交通、汽车制造、机械加工等。智慧越关注世界,从欧洲和美国市场扩展到中国市场,下一步将发展东南亚市场。
4.川崎机器人
川崎机器人在物流生产线上提供了各种各样的机器人产品,在饮料、食品、肥料、太阳能等领域都有相当大的销售。川崎码垛处理等机器人种类繁多,根据客户车间的不同情况和不同需求提供最合适的机器人。公司内部有喷涂机器人、焊接机器人和试验喷涂室,可为客户提供各种相关服务。
5.ABB机器人
中国已成为ABB世界上最大的市场。目前,ABB机器人产品和解决方案已广泛应用于焊接、装配、搬运、喷涂、精加工、包装、堆垛等行业,帮助客户大大提高生产率。
6.史陶比尔
史陶比尔集团生产精密机械和电子产品:纺织机械、工业接头和工业机器人。该系列完整的轻、中、重载机器人、4轴SCARA机器人、6轴机器人和特殊机器人,专门用于许多不同的行业和应用。目前,史陶比尔生产的工业机器人具有速度快、精度高、灵活性好、用户环境好的特点。
7.柯马
柯马公司开发的全系列机器人产品最小负载范围为6kg,最大负载800kg。柯马最新一代SMART系列机器人是SMART自动化应用方案的技术核心,针对点焊、弧焊、搬运、压缩机自动连接、铸造、涂胶、组装和切割。柯马以其不断创新的技术,成为机器人自动化集成解决方案的领导者。
8.爱普生机器人
目前,爱普生机器人在中国推广的产品主要是4轴工业机器人和6轴工业机器人,并提供行业内通用的工业机器人(机械手)附件。作为多关节工业机器人领域的领先企业,爱普生新的LS系列产品旨在减少繁重的人工操作。
9.日本安川
安川机器人活跃在焊接、搬运、装配、喷涂、放置在无尘室内的液晶显示器、等离子体显示器、半导体制造等行业领域。日本安川工业机器人一直受到用户的青睐。
10.新松机器人
新松机器人是一家以机器人和自动化技术为核心,致力于数字高端设备制造的高新技术企业在工业机器人、智能物流、自动化成套设备、智能服务机器人等领域,公司以工业机器人技术为核心,形成了大型自动化成套设备和各种产品类别,广泛应用于汽车零部件、工程机械、轨道交通、低压电器等行业。
六、探索工业大数据:关键技术与应用前景
在当今信息化和数字化迅速发展的时代,工业大数据作为推动制造业转型升级和智能化发展的重要力量,其关键技术的探讨显得尤为重要。本文将深入分析工业大数据的关键技术和应用前景,为读者提供更全面、更专业的理解。
什么是工业大数据?
工业大数据指的是在工业生产、制造和运营过程中产生的大量数据,这些数据涉及设备状态、生产流程、市场需求等多个方面。与传统数据相比,工业大数据具有以下几个特点:
- 数据量大:工业设备和传感器的普及使得数据产生量呈指数级增长。
- 数据种类多:数据来源多样,包括设备数据、操作数据、环境数据等。
- 实时性强:数据生成和收集的实时性要求助于即时决策和优化。
工业大数据的关键技术
要充分发挥工业大数据的价值,确保数据的有效利用和管理,需要依靠以下几种关键技术:
1. 数据采集技术
数据采集是工业大数据的首要环节,涉及传感器、物联网设备等硬件技术。通过这些设备,能够实时获取生产线上的各种相关数据,包括温度、湿度、压力等关键指标。
2. 数据存储与管理技术
随着数据量的增加,存储与管理显得极为重要。现阶段常用的存储解决方案有分布式数据库、云存储等。这些技术可以在保证数据安全的同时,提高数据访问速度,小型企业和大型企业都可以根据需求选择适合的存储方案。
3. 数据处理与分析技术
工业大数据的核心在于数据处理与分析技术,包括数据清洗、数据挖掘、机器学习等技术手段。这些技术能够从海量数据中提取出关键信息,为决策支持提供依据。
4. 数据可视化技术
数据可视化帮助决策者快速理解和分析数据。通过图形、图表等形式呈现数据,增加了数据的可读性和直观性,使得非技术背景的管理者也能深入理解潜在的信息。
5. 人工智能与机器学习技术
人工智能和机器学习在工业大数据中正发挥着越来越重要的作用。通过算法模型,机器可以学习生产过程中的规律,预测设备的故障,优化生产流程,从而显著降低人工成本和资源浪费。
工业大数据的应用前景
随着工业大数据技术的不断成熟,其应用领域也在不断扩展。以下是一些重要的应用前景:
- 预测性维护:通过对设备历史数据的分析,企业可以准确预测设备故障,从而实现及时维护,减少停机时间。
- 生产效率提升:通过分析生产数据,发现生产瓶颈,优化资源配置,提高生产效率。
- 智能制造:实现全流程的智能感知与决策,从而提升制造的自动化和智能化程度。
- 个性化定制:通过分析市场需求数据,企业可以实现定制化生产,以满足不同客户的个性化需求。
- 资源优化:优化原材料和能源的使用,提高资源利用效率,降低生产成本。
总结
工业大数据作为现代制造业的重要组成部分,其关键技术涵盖了数据采集、存储、处理、可视化和人工智能等多个方面。随着技术的不断进步,工业大数据将为制造业带来前所未有的机遇和挑战。了解这些技术及其应用前景,将帮助企业更好地在快速发展的市场环境中立于不败之地。
感谢您阅读这篇文章,希望通过本文的分析,能帮助您更好地理解工业大数据及其关键技术,从而为您在相关领域的研究和应用提供有价值的参考与指导。
七、工业4.0大数据
在当今世界,工业4.0大数据已经成为引领产业发展的重要动力。随着信息技术的迅猛发展,传统工业模式正经历着革命性的变革,而大数据作为工业4.0的核心技术之一,正在深刻影响着各个行业的发展与转型。
工业4.0的基本概念
工业4.0是指通过智能化、网络化和数字化技术,实现生产自动化、个性化定制和产业智能化的新阶段。而大数据作为工业4.0的关键支撑,通过高效的数据收集、处理和分析,为企业提供了更精准的决策依据,并推动了生产效率和质量的提升。
工业4.0大数据的重要意义
工业4.0大数据不仅可以帮助企业实现智能化生产,提升竞争力,还可以促进产业升级和转型升级。通过大数据分析,企业可以更好地了解市场需求、优化生产流程,提升产品质量和服务水平,推动企业向数字化转型迈进。
工业4.0大数据在制造业中的应用
在制造业中,工业4.0大数据的应用已经日趋广泛。通过传感器、物联网等技术的应用,企业可以实时监测生产过程、设备状态,提前发现问题并进行预测性维护,从而降低生产成本,提高生产效率。
- 实时监控和数据采集:通过大数据技术,制造企业可以实时监控生产过程中的各项数据指标,及时发现异常情况,保障生产质量。
- 智能制造和个性化定制:基于大数据分析,企业可以根据客户需求快速调整生产线,实现个性化定制,提升市场竞争力。
- 智能物流和供应链优化:利用大数据技术优化供应链管理,提高物流效率,降低库存成本,实现快速响应市场需求。
工业4.0大数据在其他行业中的应用
除了制造业,工业4.0大数据在其他行业中也有着广泛的应用。在能源行业,大数据技术可以帮助企业监测能源消耗情况,优化能源利用,降低能源成本;在交通运输领域,大数据分析可以提升交通管理效率,缓解交通拥堵问题;在医疗健康领域,大数据应用可以实现个性化诊疗方案,提升医疗服务水平。
工业4.0大数据的未来发展
随着人工智能、云计算等新技术的不断发展,工业4.0大数据将呈现出更加广阔的应用前景。未来,工业4.0大数据将在全球范围内推动产业升级,推动经济高质量发展,成为新一轮科技革命和产业变革的重要引擎。
结语
工业4.0大数据作为当前产业发展的重要驱动力,正在深刻地改变着我们的生产生活方式。企业需要加强对工业4.0大数据的应用与研究,积极把握新机遇,不断创新发展,实现高质量发展和可持续发展。
八、高级数据库,数据仓库有哪些关键技术?
一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。先大概列一下互联网行业数据仓库、数据平台的用途:
整合公司所有业务数据,建立统一的数据中心;
提供各种报表,有给高层的,有给各个业务的;
为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;
为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;
分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;
开发数据产品,直接或间接为公司盈利;
建设开放数据平台,开放公司数据;
。。。。。。
上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;
其实,互联网行业的数据仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;
建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。
整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:
逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。
我们从下往上看:
数据采集数据采集层的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。
数据源的种类比较多:
网站日志:
作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,
一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;
业务数据库:
业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapReduce来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。
当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS
来自于Ftp/Http的数据源:
有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;
其他数据源:
比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成
数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。
离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapReduce要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;
当然,使用Hadoop框架自然而然也提供了MapReduce接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapReduce来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapReduce要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》
实时计算部分,后面单独说。
数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;
前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据; 和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。
另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。
数据应用
业务产品
业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;
报表
同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;
即席查询
即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;
这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。
即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。
当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。
OLAP
目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;
这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;
比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。
其它数据接口
这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。
实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。
我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。
做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。
任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;
这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始; 这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。
前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。
总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。
九、工业数据分为几个主数据?
三部分。
第一是企业运营相关的业务数据,主要来源于企业内部信息化管理系统,包括PLM、ERP、谷器MES、SCM和CRM等。这类数据,诸如产品、工艺、生产、采购、订单、服务等数据,是企业的核心数据资产,以结构化数据为主,数据量不大,却有极大的挖掘价值。
第二部分是产线设备互联数据,主要是指生产过程中产线、设备、物流等的工况(如压力、温度、振动、应力等)、运行状态、环境参数等数据,一般采集自设备PLC、SCADA以及部分外接传感器。这类数据以时序数据为主,数据量大,采集频率高。
第三部分是企业外部数据,包括产品交付给用户之后的工况、运营以及维修等相关数据,同时还包括大量来自互联网的市场、环境、供应链、网络社区等外部环境的数据。
十、数据处理和分析是大数据的关键技术之一?
大数据技术是从各种类型的数据中快速获取有价值信息的技术。大数据领域出现了大量的新技术,它们已经成为大数据收集、存储、处理和呈现的有力武器。大数据处理的关键技术一般包括大数据收集、大数据预处理、大数据存储和管理、分析和挖掘、大数据收集、大数据预处理、大数据存储和管理、大数据的表示和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
一、大数据采集技术
数据采集是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。
大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。
二、大数据预处理技术
主要完成对已接收数据的辨析、抽取、清洗等操作。
1、抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。
2、清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。
三、大数据存储及管理技术
大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。
开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。
开发大数据安全技术。改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。
四、大数据分析及挖掘技术
大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘涉及的技术方法很多,有多种分类法。
根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;
根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;
根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。
从挖掘任务和挖掘方法的角度,着重突破:
1、可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。
2、数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。
3、预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。
4、语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。
5、数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。
五、大数据展现与应用技术
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。
在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。
大数据分析处理关键技术有哪些?中琛魔方大数据表示在不久的将来,智慧的时代将完全进入我们的生活,对未来有兴趣进入尖端产业的朋友们,可以收集到智慧的时代,及时获取人工智能、大数据、云计算和物联网的尖端信息和基础知识,让我们共同努力,引领人工智能的未来!