一、大数据未来的发展?
大数据市场规模的增长,在全球范围、在国内范围,都是有目共睹的,而与此同时,大数据人才供给,也成为亟待解决的重要问题。
大数据的未来发展前景是值得肯定的,但是不管是在全球市场上,还是在国内市场上,大数据人才供需不均衡,也始终是个问题。
国内大数据发展面临的瓶颈中,高端综合型人才短缺问题日益突出,大数据行业面临人才供需结构不均衡问题。
二、大数据分析未来发展
大数据分析未来发展的关键点
大数据分析作为当今信息时代的利器,在各行各业都扮演着重要角色。随着技术的不断进步和商业需求的增长,大数据分析未来的发展充满了机遇与挑战。本文将从技术、应用和趋势等方面探讨大数据分析未来发展的关键点。
技术驱动未来发展
在大数据分析领域,技术的进步是推动行业不断发展的关键因素之一。未来,随着人工智能、机器学习、云计算等新技术的不断成熟和应用,大数据分析将变得更加智能化、高效化和精准化。例如,利用深度学习算法可以提升数据分析的准确性和效率,同时通过云端计算可以实现大规模数据的快速处理和存储。
除此之外,边缘计算、物联网等新兴技术的发展也为大数据分析提供了更多可能性。未来,大数据分析将更加立体化和多样化,技术的创新将进一步推动大数据分析行业的发展。
应用场景拓展
随着大数据技术的不断成熟和普及,大数据分析的应用场景也在不断拓展。未来,大数据分析将在更多领域发挥重要作用,如金融、医疗、电商、物流等。在金融领域,大数据分析可以帮助银行机构识别风险、优化投资组合,提升服务质量;在医疗领域,大数据分析可以帮助医生进行疾病诊断、制定个性化治疗方案。
除了传统行业,大数据分析还将在智慧城市、智能制造、人工智能等领域得到更广泛的应用。通过大数据分析,可以更好地优化城市运行模式、提升工业生产效率,推动人工智能技术的发展。
未来趋势展望
未来,随着大数据技术的不断发展和普及,大数据分析行业将呈现出一些明显的趋势。首先是智能化趋势,大数据分析将借助人工智能技术实现更加智能化的数据处理和分析,提升数据分析的效率和准确性。
其次是跨领域融合的趋势,大数据分析将与人工智能、物联网、区块链等新兴技术融合,形成更加立体和综合的数据分析体系。这将带来更多的创新和应用可能性,推动大数据分析行业向更深的层次发展。
另外,隐私保护与数据安全将成为未来发展的重要关注点。随着数据规模的不断扩大,数据隐私和安全问题日益突出,如何保护用户数据、遵守相关法律法规成为大数据分析行业必须面对的挑战。
结语
大数据分析作为当今数字化时代的核心技术之一,其未来发展充满了无限的可能性。技术驱动、应用拓展、趋势变化将共同推动大数据分析行业持续向前发展。只有不断创新、提升技术水平,才能更好地应对未来发展中的机遇和挑战。
三、大数据未来发展是不是很好?
大数据有一个很明显的特征就是大,所以只有少数大企业和掌握大量私人信息的政府机构才有发展的平台。不过大数据能够创造的就业空间是非常少的,因为大数据技术门槛高,而且发展平台有限,注定是属于少数人的狂欢,绝大多数人都享受不到大数据带来的经济利益。
大数据有一个非常重要的功能便是流量去中心化。未来,大数据技术发展到极致,每个人能够看到的内容都是不一样的,每个人可以获取的信息也是不一样的。就像现在的淘宝,千人千面,一千个淘宝用户有一千个淘宝首页。阿里巴巴自然是挣到盆满钵满,但一般人就要小心自己的钱袋子了,马爸爸可能比你还清楚你需要的是什么。
由于数据是一种财富,因此个人信息被一些大企业用于大数据的分析其实是一种榨取用户价值的违法行为。但是我国法律在这一块管理并不严格,因此中国的大数据发展可能会领先世界。不过,随着国民隐私意识的提升,未来那些大数据公司想要肆意滥用公民的信息可能会有一定的难度。总体来说,如果你对IT技术有兴趣并且有天赋,大数据可以为你在最短的时间内挣取最多的财富。
四、大数据时代未来发展趋势?
未来发展趋势必定是提高生产力,解放生产力,人工智能代替人类干活,同时拉进世界各地之间的距离,促进经济发展,真正进入信息化时代。
五、目前大数据分析的发展前景如何?
我在一家大型制造企业从事了7年的数据分析工作,获得信息系统项目管理师(高级职称),担任过4个集团级数据项目的项目经理。作为偏业务的高级数据分析师,我对大数据行业的发展前景,总结下来就是:前景是光明的,但门槛会越来越高。
1.大数据是风口
数据分析是业务思维和数据处理能力的完美融合,从数据中提炼规律、洞察问题、捕捉机遇,为决策者提供数据支持。从国家的重视程度和行业的需求程度看,大数据行业都是风口。
(1)国家政策支持
先分享个真实故事:我有一个朋友,坐标北京,平时爱好研究房地产。工作3年在郊区买了两套房,工作7年置换成北三环的两套房,工作10年再次换房,在中关村买了一套顶层复式,在家里的露台可以看见海淀最好的小学。这十年,是2006年到2016年,房地产飞速发展的十年。
这就是风口对普通人的影响。而风口,离不开国家政策的支持。2021年十四五规划中将数字经济独立作为一章,可见国家对这个产业的重视。
(2)行业需求巨大
大数据本质是一种技术,未来的趋势是从互联网、金融、电信等数据资源基础较好的领域逐步向数字政府、智慧城市、智能制造等领域拓展,为社会、为企业赋能创造实打实的价值。
以制造业为例,大数据赋能企业的方向几乎可以覆盖全价值链:
①研发端:产品规划、产品全生命周期跟踪。②市场端:用户画像、精准营销、舆情监控。③制造端:最具代表的就是智能工厂。围绕着降本增效的目标,实现设备开机率提升、设备运行质量监控、生产效率提升、能源监控。比如工厂通过分析每日用水量,发现一处不易察觉的水管漏水。④供应链端:实现供应商主机厂一体化,优化供应链库存、优化运输路线。 ⑤后市场端:保客营销、车联网应用。
大数据赋能过程中势必出现巨大的人才缺口,特别是电商、金融、电信、制造、运输、车联网等行业,想了解更多大数据行业、特别是数据分析岗位信息的小伙伴,不妨看看下面这个直播,带你解锁数据分析职场大全。
2.大数据分析的就业覆盖面广
大数据分析岗位既有其专业性,又有很多可以横向通用的地方,因此就业覆盖面广、入行门槛低,无论技术还是业务领域都可以深耕。
(1)两种赛道:业务岗、技术岗
业务领域:在业务部门,包括根据业务需求进行的数据获取、数据清洗、数据解读、数据汇报等,对外输出多以PPT、Excel的形式。常用工具:Excel、PPT、SQL、统计学、python/R/ SPSS、思维导图等。
技术领域:在IT部门,包括数据抓取、数据清洗、数据仓库、数据算法、BI建设等。对外输出多为代码、数据库或网页,常用工具:SQL、数据库、Python、Excel、机器学习算法等。
无论在哪个赛道,如果想持续深耕,最终都需要同时具备业务和技术知识,也就是说高阶数据分析是复合人才。常有的岗位包括数据产品经理、商业分析、数据咨询等。
(2)三个发展阶段
从“要我做”到“我要做”的能力提升和思维转变,数据分析岗位可以分为三个阶段。
初级:按部就班,机械地完成日常工作,领导让作什么就只做什么。
中级:未雨绸缪,解读数据,主动发现风险、提出优化思路。有病治病(发现问题提出解决措施)、无病防身(发现风险及时补上漏洞)。
高级:引领开拓,全局视角统筹规划,搭建完整架构,必要时从数据角度参与公司的顶层设计。
业务赛道的数据分析岗位,成长阶段、工作类型、以及各阶段需要的业务能力做了整理,如图所示:
3.未来对大数据分析师的要求更高
大数据赋能企业的过程中会遇到很多技术和业务上的问题,因此未来对大数据从业人员的门槛也会越来越高。
(1)大数据分析赋能行业时存在的问题
我做数据分析期间,逐步牵头实现了所负责业务模块的数据管理由手工转为线上信息化,但说实话企业数据管理工作才刚刚起步,任重道远。通过与同行沟通,我们一致认为存在的问题有:
①企业对数据的运用浮于表面:很多项目雷声大雨点小,到了数据运用环节往往不了了之,仍然以人工统计、修订、决策为主。
②技术人才短缺:基础软硬件、开源框架等关键领域的技术储备仍然有差距,技术部门大多偏管理,实际IT技术多为外包,外包公司水平层次不齐。
③复合型人才短缺:同时懂技术又懂管理的人很少,很容易各说各话,无法按期完成任务后互相甩锅。
(2)成为数据分析师需要具备哪些能力
①熟练掌握数据分析工具
数据分析的常用软件包括Excel、PPT、SQL、统计学、Python/R/ SPSS、思维导图等,如果精力允许的话,还可以了解下AI,未来同质化的数据处理工作会逐步被AI取代。
我常用的是Excel。Excel的功能很强大,比如求和,除了基础求和,实际还会使用分类求和、筛选求和、加权求和、带公式求和等。此外,要想胜任数据清洗、初步数据解读工作,还需要掌握筛选、分列、转换格式、去重、透视、数据有效性、生成图表等。
Excel入门容易,精通很难。很多人都说自己会excel,但150万的数据量,有人花1天处理完,有人花1周也没处理完,会与会也是不同的,方法不同,效率差异很大。感兴趣的小伙伴可以免费领取资料包,技能+实战,带你玩转Excel。
②了解数据分析的思路
以统计报表为例,传统输出报表的步骤:设计表格——找相关方填数——汇总评审后交付。报表表头固化,如变化需重新开发。
数据分析师输出报表的步骤:根据报表需求后,先分析报表涉及的数据字段——明确数据来源——拿到原始的底层数据明细——数据清洗,这个过程也是对底层数据进行评审的过程,从中可以发现很多业务流程bug——整理出报表所需的数据明细表——透视自动生成动态报表。业务需求发生变化时,只要拿到的底层数据不变,可以快读进行动态调整。
③掌握业务知识
数据分析的本质通过高效的技术手段解决业务问题,举一个我的亲身经历:
公司开发智能驾驶舱,到了数据验证阶段,牵头部门发现一组数据和线下报表始终差异巨大,很多同事筛查无果后找到我。
我拿到报表后,问了三个问题:问题1:统计方式是求和还是计数;问题2:统计范围包括哪些业务;问题3:统计范围包括哪些产品。
三个问题解决之后,线上线下数据准确率由50%提升到了98%。试想一下,如果我不懂这块业务,会再多的分析工具也没办法解决问题。
④建立面向客户的思维模式
我见过很多甩锅式的数据分析师,对业务一窍不通,也没有意识去了解业务,停留在自己的一亩三分地。遇到问题之后,永远想的是先找别人的原因,是输入方没把需求说清楚、是别的组没配合他们、是整个流程不规范,各式各样的理由都有。
这种行为本质是让客户迁就他,而不是他去为客户解决问题。好的数据分析师会在与客户的交流中,搞清楚该客户的需求,遇到问题先进行自测,再和客户确认,并根据问题提出自己的解决方案。
⑤具备项目经理和产品经理的能力
随着数据分析的工作深入,往往涉及面广、流程复杂,经常以项目的形式开展。从业人员要具备项目经理的能力,能够从项目可行性分析、项目组织、项目计划、项目进展跟踪、风险管控、项目验收各个阶段深度参与;也需要具备产品经理的能力,能够准确将用户需求转化为产品需求,推动产品开发落地。
(3)提升大数据分析能力的途径
第一阶段:搜集碎片化知识。
刚刚接触大数据,什么都觉得新鲜,很容易“乱花渐欲迷人眼”,这个阶段讲究的就是“多”。信息收集得越多越好。
可以通过各种途径搜集信息,包括不限于文章、视频、直播间等等,反正大数据时代,你只要搜一个知识点,很快会给你推送更多相关知识。如果条件允许,也可以和专业人士交流。
第二阶段:建立体系化的知识架构。搜集了一堆碎片化信息后,搭建知识架构是最耗费时间精力的。需要自行整理知识点,搭建基础框架,有针对性地再去搜集相应知识。
这个阶段如果逻辑思维强、学习能力强、精力允许,可以自学;也可以报班。不过有一点需要注意,报班不是万能的,老师的知识+自己的思考,才能定制最适合自己的知识架构。
第三阶段:专项提升能力
无论是IT技术、数据分析思维、还是项目管理思维,都是熟能生巧,一定要多动手多练习。
特别是技术类的能力提升,比如Excel、SQL、Python,在没有实操机会的情况下自学难度太大,建议该报班报班,该买书买书。帮助快速搭建体系知识。
无论你是刚入职场、还是想转型、亦或是陷入瓶颈,要想在这个领域职业生涯更长些,都建议多了解、多思考,建立系统的知识架构后再专项突破。感到迷茫的小伙伴,可以听听下面的直播课,数据分析大咖为你答疑解惑。
总结:
1.从国家的重视程度和行业的需求程度看,大数据将仍然是未来很长一段时间的热门板块。
2.大数据就业覆盖面广,无论技术还是业务领域都可以深耕。
3.未来对大数据从业人员的门槛也会越来越高。个人要提升转变思维、充实能力,选择自己合适的赛道深耕,并逐渐成为行业需要的复合型人才。
我会持续分享数据分析知识、职场tips,麻烦看到这里的小伙伴点赞关注,职场路上我们一起进步!
六、大数据分析师就业和发展前景?
大数据分析师的就业和发展前景非常好。
大数据分析师是比较新兴的行业,虽然概念在中国有10年左右了,但真正开始做也就是这几年,现在主要是大公司在做,就业前景还不错,现在这方面的专业人才比较欠缺。
七、大数据分析原理?
把隐藏在一些看是杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律
八、bms大数据分析?
bms即电池管理系统,是电池与用户之间的纽带,主要对象是二次电池。
bms主要就是为了能够提高电池的利用率,防止电池出现过度充电和过度放电,可用于电动汽车,电瓶车,机器人,无人机等。
此外,bms还是电脑音乐游戏文件通用的一种存储格式和新一代的电信业务管理系统名。
bms可用于电动汽车,水下机器人等。
一般而言bms要实现以下几个功能:
(1)准确估测SOC:
准确估测动力电池组的荷电状态 (State of Charge,即SOC),即电池剩余电量;
保证SOC维持在合理的范围内,防止由于过充电或过放电对电池造成损伤,并随时显示混合动力汽车储能电池的剩余能量,即储能电池的荷电状态。
(2)动态监测:
在电池充放电过程中,实时采集电动汽车蓄电池组中的每块电池的端电压和温度、充放电电流及电池包总电压,防止电池发生过充电或过放电现象。
同时能够及时给出电池状况,挑选出有问题的电池,保持整组电池运行的可靠性和高效性,使剩余电量估计模型的实现成为可能。
除此以外,还要建立每块电池的使用历史档案,为进一步优化和开发新型电、充电器、电动机等提供资料,为离线分析系统故障提供依据。
电池充放电的过程通常会采用精度更高、稳定性更好的电流传感器来进行实时检测,一般电流根据BMS的前端电流大小不同,来选择相应的传感器量程进行接近。
以400A为例,通常采用开环原理,国内外的厂家均采用可以耐低温、高温、强震的JCE400-ASS电流传感器,选择传感器时需要满足精度高,响应时间快的特点
(3)电池间的均衡:
即为单体电池均衡充电,使电池组中各个电池都达到均衡一致的状态。
均衡技术是目前世界正在致力研究与开发的一项电池能量管理系统的关键技术。
九、大数据分析特点?
1、海量数据:大数据分析特点是处理海量数据,即处理超过传统计算机能够高效处理的数量级的数据。
2、多维度数据:大数据分析特点之二是处理多维度的数据,即大数据不仅仅包含数据的结构,还包括其他类型的数据,如文本,图像和视频等。
3、实时性:大数据分析特点之三是实时性,即大数据分析需要根据实时的数据进行分析,以满足实时的业务需求。
4、高可靠性:大数据分析特点之四是高可靠性,即大数据分析系统需要能够确保数据的完整性和准确性,以满足业务需求。
十、企业未来发展和大数据有何关联?
企业未来发展或大数据有何关联?
企业如果不能充分的利用大数据来提升自己的商品销售,服务,生产这些环节,那么必然会被未来社会所抛弃,现在的大数据能于企业已经形成了一个密不可分的整体,大数据时代下的企业,需要不断地通过大数据来分析出企业将来所要发展的方向。是企业制定自己发展策略的一个重要依据。