一、数据的特点?
一是数据本身是对一个事实的描述,代表某件事物的客观描述,即用“数字符合”代表事物;
二是数据分结构化数据、半结构化数据和非结构化数据。现在利用较多的是结构化数据,企业的ERP、SAP数据库里的数据基本上都属于结构化数据。半结构化数据、非结构化数据现在利用并不太多,但比结构化数据更能说明事物的本质,如视频、音频、场景数据。而且80%的数据是非结构化的,这也是第一代、第二代Ai瓶颈,第三代认知智能兴起的原因,也是千城数智自主研发芊姬智脑的原因一一因为只有基于认知智能的芊姬智脑才能更有效处理汽车下沉市场及丰富车生活的半结构和非结构数据,赋能及服务汽车流通上游及整体汽车产业链,促进汽车数字的产业化和汽车产业的数字化;
三是数据生产需要成本投入,需要投入硬件、软件、人工成本;如果要购买,需要支付对方一定的费用。
四是数据具有互补性。单个的数据价值并不大,只有数据规模达到一定的程度,而多个维度且具有较好的及时性时数据才有用,规模维度、及时性等对其作用的发挥会产生很大的影响。
五是数据具有无限性。数据具有可复制、可共享、无限增长和供给的品质。数据资产不需要折旧、摊销,它会越用越多。数据资产本身是无限增长,它每年都在增值,而不是被消耗。
六是数据资产成为数字经济时代的关键生产要素。农业时代的关键生产要素是土地、劳动力,工业时代的关键生产要素是资本、技术。数字经济时代的核心生产要素是数据,数据是国家和企业的核心资产,也是未来取之不尽的新石油。
二、数据大数据的特点的是什么
博客文章:数据大数据的特点是什么
随着数据时代的到来,大数据已经成为了我们生活中不可或缺的一部分。那么,大数据的特点是什么呢?
首先,大数据的第一个特点是容量大。随着各种传感器、移动设备和互联网的普及,数据量正在以惊人的速度增长。这意味着我们需要处理更多的数据,以便从中提取有价值的信息。
其次,大数据的第二个特点是多样性。数据不再局限于传统的结构化数据,如数据库中的表格数据,而是包括了半结构化和非结构化数据,如视频、音频、社交媒体帖子和文本等。这种多样性使得大数据分析变得更加复杂,但也为我们提供了更多的机会。
第三,大数据的第三个特点是速度快和时效性。由于数据量庞大,我们需要快速处理和分析数据,以便在竞争激烈的市场中抢占先机。此外,对于一些敏感数据,我们需要及时删除或匿名化,以保护用户的隐私。
第四,大数据的第四个特点是可扩展性和灵活性。由于大数据分析涉及到的数据量和复杂性可能随时变化,我们需要能够灵活地扩展和分析数据,以满足不同的需求。
综上所述,大数据的特点包括容量大、多样性、速度快和时效性、可扩展性和灵活性。这些特点使得大数据成为了一种强大的工具,可以帮助我们更好地理解世界,做出更明智的决策。
相关关键字
大数据、特点、容量大、多样性、速度快、时效性、可扩展性、灵活性、结构化数据、半结构化数据、非结构化数据、数据库、表格数据、视频、音频、社交媒体帖子、文本、传感器、移动设备、互联网、处理、提取、有价值信息
三、大数据的数据特点是什么
大数据的数据特点是什么
在当今信息时代,大数据已经成为企业和组织处理和分析海量数据的关键工具。大数据的特点可以帮助我们更好地理解和应用这个概念。在本篇文章中,我们将探讨大数据的数据特点是什么。
1.数量庞大
大数据的最显著特点就是其数据量庞大。与传统的数据量相比,大数据的规模更大,以TB、PB、甚至EB为单位。这些数据来自各种来源,包括社交媒体、传感器、日志文件等。数量庞大的数据为企业和组织提供了更全面和详尽的信息,有助于洞察市场趋势、顾客需求以及业务绩效。
2.多样性
大数据不仅仅包含结构化数据,还包括非结构化和半结构化数据。结构化数据是以表格和数据库形式存储的数据,如销售记录和用户信息。非结构化数据指的是无法被传统数据库轻松组织和处理的数据,比如文本、音频、图像等。而半结构化数据则介于两者之间,具有一定的结构但不符合传统数据库中的严格格式要求。大数据的多样性使得分析师能够从各种维度来分析数据,发现隐藏的模式和关联。
3.时效性
大数据的时效性是指数据的产生和处理速度相对较快。随着技术的发展,数据可以实时或几乎实时地被捕获和分析。这种时效性对于需要快速做出决策的业务非常重要。例如,一家电子商务公司可以通过实时监测网站流量和销售数据来做出促销活动调整,以提高销售效果。
4.价值密度低
大数据中的价值密度低是指大部分的数据并不具备直接的商业价值。事实上,大数据中只有一小部分数据对企业和组织的决策起到重要作用。因此,对大数据的精细分析和筛选非常重要。通过运用高级分析技术,如数据挖掘和机器学习,可以发现那些具有潜在商业价值的关键数据。
5.持续增长
大数据并不是一成不变的,而是在不断增长和发展的。大数据的增长来自于各种来源,包括社交网络、物联网、移动应用和云计算等。随着新技术的引入和数据收集能力的提升,大数据的规模和复杂性将不断扩大。因此,企业和组织需要不断改进其数据处理和分析能力,以应对不断增长的数据挑战。
结论
大数据的数据特点使其在现代商业环境中具有重要意义。数量庞大、多样性、时效性、价值密度低和持续增长是大数据的关键特征。理解这些特点并将其应用于数据分析和决策过程,将帮助企业和组织更好地利用大数据资源,获得竞争优势,并取得更大的商业成功。
四、数据清单的特点?
数据清单意思是指在Excel中按记录和字段的结构特点组成的数据区域。
五、评估数据的特点?
原子性( Atomicity )、一致性( Consistency )、隔离性( Isolation )和持续性( Durability )。这四个特性简称为 ACID 特性。
六、ATM的数据特点?
ATM是一项数据传输技术。它适用于局域网和广域网,它具有高速数据传输率和支持许多种类型如声音、数据、传真、实时视频、CD质量音频和图象的通信。
ATM是在LAN或WAN上传送声音、视频图象和数据的宽带技术。它是一项信元中继技术,数据分组大小固定。你可将信元想像成一种运输设备,能够把数据块从一个设备经过ATM交换设备传送到另一个设备。所有信元具有同样的大小,不象帧中继及局域网系统数据分组大小不定。使用相同大小的信元可以提供一种方法,预计和保证应用所需要的带宽。如同轿车在繁忙交叉路口必须等待长卡车转弯一样,可变长度的数据分组容易在交换设备处引起通信延迟。
七、分类数据的特点?
统计数据按不同的分类规则可分为不同的类型,这里主要按三种分类规则分类。
(1)按照所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
(2)按照统计数据的收集方法,可以将其分为观测数据(observational data)和实验数据(experimental data)。
(3)按照被描述的对象与时间的关系,可以将统计数据分为截面数据和时间序列数据。
八、多元数据的特点?
多元化,可视化,便于理解,有利于实践
九、源数据的特点?
源数据应当具有的特性是:源数据应当具有可归因性、易读性、同时性、原始性、准确性、完整性、一致性和持久性。
1、源数据采集能力是公众对报道内容可溯、可证的要求。
毋庸置疑,由于难以核查的信源增加和传播平台泛众化等因素,对于真相与事实报道的识别难度不断增加。
与此相关,报道取得公众信任的成本也在不断加大。
2、信息来源的单一化和传统报道采集方式的落后是报道失实的重要原因。
众所周知,新闻内容角度的不同会带来不同的传播效果。
其本质是小数据、少角度和短视野带来的客观性和全面性的缺失。
而不完整、不完全数据所反映出的信息,往往导致相关性与因果性逻辑的混淆,使报道片面、局限和难以印证。
3、媒体融合转型不应忽视前端数据采集与感知能力建设。
媒体融合转型的探索强化了新技术在报道内容包装、形式优化、姿态亲和以及互动体验上的应用,也加大了多种传播样式在组织重塑和流程再造方面的改革。
数据源头失真、感知能力不足成为传统媒体失敏、失聪的重要原因,极大地限制了媒体事实报道的水平和效率,进而进一步削弱了媒体行业在公共决策。
4、“源数据”需要从理论到方法,从观念到业务规划、技术支撑、管理协同、业务模式的体系性建构。
“源数据”虽只是数据体系建设中的一个部分,但却会影响到采写、复验、编辑、审核及考核评价等各个环节的变革,涉及业务逻辑的全链再造。
十、云数据的特点?
云数据是由财富在线研发团队独立自主研发而成的金融数据集成处理平台,该平台通过高频高频数据清洗技术,研发出最完整的金融数据分析模型。为用户提供高效的投资决策参考。
以数据层--信息层--精算层--多功能集成分配层--信息推送平台--超导报警系统为处理平台,是完整的证券信息高速处理平台